

Food and Environment Summit Pohnpei State Conference Room Kolonia, Pohnpei July 22, 2012

Techniques in Compost Production and Use in Pohnpei

Jonathan Deenik, P.hD. Tropical Plant and Soil Science University of Hawaii at Manoa

<u>Outline</u>

olmportance of Compost Compositing basics •Compost Experiments Compost as a Soil Amendment • Experimental Results

Composting

- Taking local organic materials and decomposing them in a controlled setting to produce natural fertilizer.
- Composting is a low tech practice that can convert waste into a useful soil addition for crop production.

Benefits of Compost to Soil

Composting Process

Composting materials on Pohnpei.

Brown (carbon)

Nitrogen

Compost Research

1. Recipe a. Brown+green+manure b. Brown+manure c. Brown+green+fish 2. Carbon Source a. Hibiscus wood b. Albizzia wood c. Coconut husk

Data

- 1. Temperature
- 2. pH
- 3. Maturity
- 4. Chemical properties

Brown+green+manure

Brown+fish+leaves

pН

Day

Compost Nutrient Value at 8 weeks

Compost	рН	C:N	Ν	P	K	Ca	Mg	Fe	Mn	Zn	Cu	В
			%%%%%									
BGM	7.06	15.7	1.9	0.5	0.3	1.7	0.7	45699	557	465	78	11.9
BM	7.26	25.0	1.2	0.5	0.3	1.1	0.4	44521	401	252	50	4.0
BGF	6.80	12.5	2.9	0.8	0.6	2.1	0.8	25608	283	147	25	21.2

- Compost made with fish waste contains highest nutrient value
- Brown+manure (BM) recipe lowest nutrient value
- All composts low in P and K

Compost Field Experiment

Treatments T0 = no amendmentT1 = 16.5 lbs $T_2 = 33 \, \text{lbs}$ T3 = 66 lbsCompost T4 = 172 lbs T5 = 344 lbsT6 = 1.8 lbs 10-20-20 24 lbs coral sand

Yield Results

Cabbage Growth: Crop 1

Cabbage Growth: Crop 2

Compost is a liming material

• Compost effectively increases soil pH

Magnesium

Compost Carbon Source

T1 = Coconut husk T2 = Hibiscus wood chip T3 = Albizzia wood chip

Results: Coconut

• Coconut pile did not reach thermophyllic phase

Results: Hibiscus

Hibiscus pile reached thermophyllic phase
Temperature sufficiently high to kill pathogens

Results: Albizzia

Albizzia pile reached thermophyllic phase
Temperature did not reach 55°C

Summary

• Recipe affects compost quality

- Fish waste compost high N content
- Local composts low in P and K

• Carbon source affects composting process

- Coconut husk is low quality carbon source that will need higher manure addition to compost correctly.
- Hibiscus wood is highest carbon quality wood
- Albizzia intermediate
- Locally made compost is a favorable soil amendment that can replace imported fertilizer
 - Increases soil nutrient status
 - Increases soil water holding capacity

Acknowledgements

- Mr. Saimon Mix, Farmer, Palikir
- Mr. Mark Kostka, COM-FSM
- Mr. Alpenster Henry, COM-CRE
- Mr. Kazuo Ishikawa COM- CRE
- Dr. Mark Thorne, University of Hawaii
- Mr. Paul Lake, Gibson Santos and NRCS staff Pohnpei
- James Harmon, MS Graduate Student
- Funded by USDA Grant # 59-2501-10-040-1

